9x^2+24x+12=24x+17

Simple and best practice solution for 9x^2+24x+12=24x+17 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9x^2+24x+12=24x+17 equation:



9x^2+24x+12=24x+17
We move all terms to the left:
9x^2+24x+12-(24x+17)=0
We get rid of parentheses
9x^2+24x-24x-17+12=0
We add all the numbers together, and all the variables
9x^2-5=0
a = 9; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·9·(-5)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*9}=\frac{0-6\sqrt{5}}{18} =-\frac{6\sqrt{5}}{18} =-\frac{\sqrt{5}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*9}=\frac{0+6\sqrt{5}}{18} =\frac{6\sqrt{5}}{18} =\frac{\sqrt{5}}{3} $

See similar equations:

| 1/7|x-3|-2=9 | | 5(x+)-3x+3=5 | | 20-7c-7c=-11c-16 | | 4x-(16)=-20 | | 2.5x-(4)=41 | | 4x-4=4x+-8 | | -5(-x-1)+4x-4x-1=49 | | 5(2r-0.3)+0.5(4r+3)=-64 | | 5/3x+1/3x=10⅔+7/3x | | 43=8x- | | a2-9=9 | | -3x+10=-6x+11 | | 8=(x/3)+6 | | -3x+10=-6x-11 | | 5x-23=141 | | 3x-5+2x-1+x+1=31 | | 7x=1052 | | A×2=x-23 | | 3(x-2)+4=3(2x+1)-5-3x | | -3+8x+7+6x=180 | | 7x+4=8x-20 | | -4.25(w-15)=-17 | | -40x+18+20x+3-15x+9=180 | | -6x+2=10x-28 | | A2=x-23 | | X-23=a2 | | X-23=y2 | | 5x-19=7x-32 | | n+(3n+35)=180 | | 9x0.07=9x7x | | X-23=x2 | | X+10=2-8x |

Equations solver categories